Substituent Effects on the ¹³C and ¹⁵N NMR Spectra of *p*-Substituted Phenylacetonitriles

NOTES

Yoshiaki Kusuyama
Department of Chemistry, Faculty of Education, The University of
Wakayama, Sakaedani 930, Wakayama 640
(Received March 2, 1992)

Synopsis. ¹³C and ¹⁵N NMR spectra have been measured for fifteen p-substituted phenylacetonitriles. The substituent-induced chemical shift changes (SCS) of C-1 had an inverse trend, while SCS (¹⁵N) showed a normal trend. These SCS values were correlated by the normal substituent constant, σ^0 . The observations are consistent with a pi-polarization mechanism in which the C \equiv N bond is polarized by the p-substituted phenyl moiety.

Substituent-induced chemical shift changes (SCS)^{1,2)} of side-chain carbons in p-disubstituted benzenes are considerably smaller than those of the benzene ring carbons, and the directions of SCS vary with the character of the side chain and the substituents. Though a wide range of normal, zero, and inversed substituent effects for side-chain atoms have emerged, $^{1,2)}$ SCS for C_{α} of p-substituted styrenes3) or p-substituted phenylethynes,4) which takes a sp2 or sp hybridization, shows an inverse trend (i.e. electron-attracting groups such as NO2 lead a high field shift), while SCS (C_{β}) has a normal trend. Similar results have been reported for p-substituted benzonitriles: SCS (C_{α}) has an inverse trend and SCS (15N) has a normal trend. (1,5,6) The most important interaction causing such SCS trends is a partial pipolarization of the C=N bond.^{2,7,8)} The direct resonance perturbation through p-phenylene is insignificant because of the unstable cumulene character of the polarized canonical form.8)

In order to obtain further information concerning the substituent effect in p-disubstitued benzenes, the 13 C and 15 N chemical shifts of p-substituted phenylacetonitriles were measured and compared with SCS (C_{α}) and SCS (15 N) of p-substituted benzonitriles, and with the Hammett substituent constants. In p-substituted phenylacetonitriles, the cyano group is insulated from substituted phenyl by the methylene group, and no direct resonance exaltation contributes to SCS (15 N).

$$X - CH_2 - C \equiv N$$

To avoid solute-solute interactions, the concentrations of the samples for NMR measurements were under 0.5 mol dm⁻³, considering infinitive dilution (Table 1). Because of the low natural abundance of ¹⁵N and the insensitivity of ¹⁵N in the C \equiv N group to NMR detection, ¹⁵N NMR was measured with ¹⁵N-labelled *p*-substituted phenylacetonitrile. All of the ¹³C spectra were obtained at natural abundance for ca a 0.5 mol dm⁻³ solution of *p*-substituted phenylacetonitriles. The spectra were obtained in both chloroform-*d* and more polar acetone-*d*₆. ¹³C and ¹⁵N NMR chemical-shift data for *p*-substituted phenylacetonitriles are given in Table 2.

The values of SCS measured in chloroform-d were parallel to those of SCS measured in acetone- d_6 , while the ranges of SCS (in acetone- d_6) were smaller than those of SCS (in chloroform-d). Hence, only SCS (in chloroform-d) is discussed in the following discussion. The SCS (C-1) values cover a range of 2 ppm, while the ¹⁵N shifts are more sensitive to the substituents and range over 6 ppm. It is noticeable that the directions of the substituent effects are different at these two atomic sites: SCS (C-1) shows an "inverse" substituent effect similar to SCS (C_{α}) of p-substituted benzonitriles, ¹⁾ whereas SCS (¹⁵N) has a normal trend, as does the SCS (C_{α}) of C_{α} 0 of C_{α} 1 between SCS (C-1) and SCS (C_{α} 1) with a negative slope. This correlation indicates the

SCS (C-1) =
$$-0.38$$
 SCS (15 N) -0.10 , $r = 0.994$, $^{10)}$ $s = 0.080$ $^{11)}$

significant polarization of the C=N bond induced by p-substituted phenyl moiety. SCS (C-1) does not have a good linear correlation with SCS (C-2).¹²⁾ As expected, there is a good correspondence between SCS (C-1) or SCS (15 N) and the normal substituent constant, σ^0 values, $^{9)}$ rather than original Hammett σ_n values.

SCS (15N) = 4.76
$$\sigma^0$$
 – 0.19, r = 0.990, s = 0.269
SCS (15N) = 3.74 σ_p + 0.32, r = 0.983, s = 0.337
SCS (C-1) = -1.80 σ^0 – 0.03, r = 0.984, s = 0.124

Table 1. Effect of the Concentration on the ¹⁵N Chemical Shift of [¹⁵N]Phenylacetonitrile in CDCl₃

Concentration	Chemical shift ^{a)}	Concentration	Chemical shift ^{a)} ppm	
mol dm ⁻³	ppm	mol dm ⁻³		
3	228.05	0.25	227.61	
1.5	227.78	0.125	227.61	
1.0	227.70	0.063	227.60	
0.5	227.63	0.031	227.60	

a) ppm from external [15N]NH4NO3.

Table 2.	13 C and 15 N Substituent-induced Chemical Shifts (δ_X – δ_H , ppm) of p -Substituted Phenylacetonitrile
	(Positive Values Represent Down Field Shifts)

Nuclei	15 N		C-1		C-2		C-ipso	
Solvent	CDCl ₃	CD ₃ COCD ₃	CDCl ₃	CD ₃ COCD ₃	CDCl ₃	CD ₃ COCD ₃	CDCl ₃	CD ₃ COCD ₃
Subst.								
$N(Me)_2$	-2.21	-1.64	0.65	0.63	-0.84	-0.98	-12.93	-13.14
NH_2	-1.82	-1.61	0.64	0.34	-0.72	-0.87	-10.77	-11.43
MeO	-1.06	-0.73	0.31	0.37	-0.74	-0.84	-8.18	-8.33
EtO	-0.94	-0.70	0.25	0.32	-0.65	-0.82	-8.39	-8.36
Me	-0.62^{a}	-0.42	0.25	0.14	-0.46	-0.42	-2.00	-3.45
t-Bu	$(1.53)^{b)}$ $-0.51^{a)}$ $(1.60)^{b)}$	-0.06	0.04	0.14	-0.38	-0.50	-3.15	-3.05
F	$0.49^{a)}$ $(1.61)^{b)}$	0.12	-0.32	0.00	-0.78	-0.68	-4.37	-3.78
Н	0.00 227.60°)	0.00 228.20 ^{c)}	0.00 117.97 ^{d)}	0.00 119.55 ^{d,e)}	0.00 23.46 ^{d)}	0.00 23.87 ^{d,e)}	0.00 130.08 ^{d)}	0.00 132.68 ^{d,e)}
Cl	1.04 ^{a)} (1.60) ^{b)}	0.90	-0.47	-0.31	-0.43	-0.53	-1.54	-1.04
Br	1.31 ^{a)} (1.60) ^{b)}	1.02	-0.69	-0.39	-0.29	-0.44	-1.12	-0.47
MeOCO	1.83 ^{a)} (1.53) ^{b)}	1.22 ^{a)} (1.68) ^{b)}	-0.85	-0.44	0.21	0.08	4.82	5.37
EtOCO	1.80 ^{a)} (1.60) ^{b)}	1.27	-0.83	-0.49	0.20	0.06	4.73	5.16
CF ₃	2.20 ^{a)} (1.52) ^{b)}	1.30 ^{a)} (1.53) ^{b)}	-0.95	-0.40	0.10	0.16	3.94	5.03
CN	3.36 ^a) (1.60) ^{b)}	1.84	-1.44	-0.77	0.37	0.23	5.09	5.68
NO ₂	3.65 ^{a)} (1.52) ^{b)}	2.16	-1.32	-0.81	0.11	0.06	7.21	7.68

a) A center of triplet. b) ${}^3J_{\rm NH}$ (Hz). c)Chemical shift from external [${}^{15}{\rm N}$]NH $_4{\rm NO}_3$. d) Chemical shift from TMS. e) Chemical shifts were measured with respect to a center of acetone- d_6 and converted to TMS reference by additing 30.10 ppm.

SCS (C-1) =
$$-1.41 \sigma_p + 0.32$$
, $r = 0.974$, $s = 0.162$

Therefore, SCS (C-1) and SCS (15 N) can be rationalized to be perturbed in a through-space manner by the polar p-substituted phenyl moiety. 7,8 As shown in Figs. 1 and 2, SCS (C-1) and SCS (15 N) showed a linear relation with SCS (C a) and SCS (15 N) for p-substituted benzonitrile, respectively, while the amino and dimethylamino groups deviated measurably from the regression line (Fig. 1). Thus, the C=N bonds of p-aminobenzonitrile and p-dimethylaminobenzonitrile were strongly perturbed by a so-called secondary resonance effect, as substantiated for SCS (15 N, 17 O) in p-substituted nitrobenzenes. 7

SCS (C-2) showed a normal trend, while the effects of the electron-attractive groups were very small. The application of the LSFE (linear substituend free energy) equation 13) to SCS (C-2) afforded a correlation: SCS (C-2) = $-0.39 \, \sigma_i + 1.21 \, \sigma_\pi^+ + 2.31 \, \sigma_\pi^- - 0.23 \, (r=0.925, s=0.18)$. The absolute values of 3.1 and 5.9 for ρ_π^+/ρ_i and ρ_π^-/ρ_i , respectively, reveal that SCS (C-2) is mainly controlled by a resonance effect.

Experimental

Most of the 15 N-labelled p-substituted phenylacetonitriles were prepared by a reaction of the corresponding substituted benzyl chlorides with potassium [15 N]cyanide. p-Nitrophenylacetonitrile was obtained by the nitration of [15 N] phenylacetonitrile. The p-dimethylamino derivative was

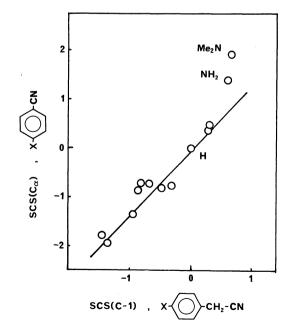


Fig. 1. Plot of $SCS(C_{\alpha})$ of *p*-substituted benzonitriles versus SCS(C-1) of *p*-substituted phenylacetonitriles measured in chloroform-*d*.

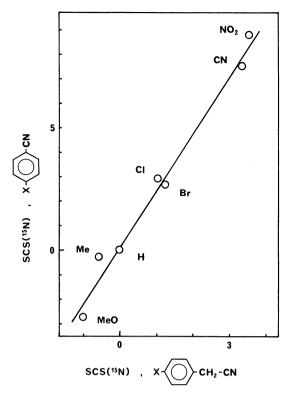


Fig. 2. SCS(15N) values in ppm for 4-substituted benzonitriles versus SCS(15N) for 4-substituted phenylacetonitriles.

prepared by the methylation of the *p*-amino derivative, which was obtained by the reduction of the ¹⁵N-labelled *p*-nitrophenylacetonoitrile using tin and hydrochloric acid. The boiling and melting points of these ¹⁵N-labelled phenylacetonitriles were as follows: substituent, bp(°C/mmHg)¹⁴) or mp(°C); (Me)₂NH, 52; NH₂, 45; MeO, 110/3; EtO, 110/2.5; Me, 117/12; *t*-Bu, 116—119/3.5; F, 109/12; H, 81—82/4; Cl, 102—108/4; Br, 109—113/3; COOMe, 51.5; COOEt, 144—145/2.5; CF₃, 105/9, 40; CN, 99.5; NO₂, 116—117.

The ¹³C and ¹⁵N spectra were recorded on a JEOL EX90 spectrometer at 22.4 MHz for ¹³C and at 9.0 MHz for ¹⁵N,

respectively. For ^{15}N NMR measurements, 10 mm sample tubes were used; the peaks were referenced to aqueous $[^{15}N]NH_4NO_3$ in the inserted 5 mm tube. The typical experimental conditions were a 14.5 μs pulse width (45 flip angle), an acquisition time of 6.55 s, a spectral width of 5000 Hz, and 65 K data points. The digital resolution was 0.017 ppm (0.15 Hz), and the reproducibility was +0.05 ppm. The conditions for ^{13}C NMR measurements were as good as those reported in a previous study. 15

References

- 1) J. Bromilow, R. T. C. Brownlee, and D. J. Craik, *Aust. J. Chem.*, **30**, 351 (1977).
- 2) D. J. Craik and R. T. C. Brownlee, *Prog. Phys. Org. Chem.*, 14, 1 (1983).
- 3) G. K. Hamer, I. R. Peat, and W. F. Reynolds, *Can. J. Chem.*, **51**, 897 (1973); J. Bromilow and R. T. C. Brownlee, *Tetrahedron Lett.*, **1975**, 2113.
- 4) D. A. Dawson and W. F. Reynolds, Can. J. Chem., 53, 373 (1975).
- 5) F. W. Wehrli, J. W. D. Haan, A. I. M. Keulemans, O. Exner, and W. Simon, *Helv. Chim. Acta*, 52, 103 (1969).
- 6) P. S. Pregosin, E. W. Randall, and A. I. White, J. Chem. Soc., Perkin Trans. 2, 1972, 513.
- 7) D. J. Craik, G. C. Levy, and T. C. Brownlee, *J. Org. Chem.*, **48**, 1601 (1983).
- 8) C. DellErba, F. Sancassan, M. Novi, G. Petrillo, A. Mugnoli, D. Spinelli, G. Consiglio, and P. Gatti, *J. Org. Chem.*, **53**, 3564 (1988).
- 9) Y. Yukawa, Y. Tsuno, and M. Sawada, *Bull. Chem. Soc. Jpn.*, **39**, 2274 (1966).
- 10) Correlation coefficient.
- 11) Standard deviation.
- 12) Correlation coefficient: 0.842, standard deviation: 0.38.
- 13) SCS = $\rho_i \sigma_i + \rho_\pi^* \sigma_\pi^* + \rho_\pi^* \sigma_\pi^-$; a) Y. Yukawa and Y. Tsuno, Nippon Kagaku Zasshi, **86**, 837 (1965); b) Y. Tsuno, M. Fujio, and Y. Yukawa, Bull. Chem. Soc. Jpn., **48**, 3324 (1975); c) M. Sawada, Y. Takai, S. Yamano, S. Misumi, T. Hanafusa, and Y. Tsuno, J. Org. Chem., **53**, 191 (1988); d) M. Sawada, Y. Takai, T. Tanaka, T. Hanafusa, M. Okubo, and Y. Tsuno, Bull. Chem. Soc. Jpn., **63**, 702 (1990).
- 14) 1 mmHg = 133.322 Pa.
- 15) Y. Kusuyama, T. Kagosaku, and T. Hasegawa, *Bull. Chem. Soc. Jpn.*, **63**, 2836 (1990).